
SA367 Mathematical Models for Decision Making Spring 2018 Uhan

Lesson 4. Solving Shortest Path Problems with networkx

Overview

● In this lesson, we’ll learn how to use some Python packages to solve shortest path problems.

An example

You have just purchased a new car for $22,000. _e cost of maintaining a car during a year depends on its age at the
beginning of the year:

Age of car (years) 0 1 2 3 4

Annual maintenance cost ($) 2,000 3,000 4,000 8,000 12,000

To avoid the high maintenance costs associated with an older car, you may trade in your car and purchase a new car.
_e price you receive on a trade-in depends on the age of the car at the time of the trade-in:

Age of car (years) 1 2 3 4 5

Trade-in price ($) 15,000 12,000 9,000 5,000 2,000

For now, assume that at any time, it costs $22,000 to purchase a new car. Your goal is to minimize the net cost
(purchasing costs +maintenance costs −money received in trade-ins) incurred over the next ûve years.

1. Formulate your problem as a shortest path problem.

2. Solve your shortest path formulation: give the shortest path length and a shortest path.

3. Interpret the shortest path length and shortest path in the context of the problem.

● Recall that we formulated this problem as a shortest path problem back in Lesson 1, like this:

● Let’s solve this shortest path problem— that is,

○ obtain the length of a shortest path
○ obtain the nodes/edges in a shortest path

● First obstacle: how do we represent graphs in Python?

Finding Python packages

● If you want to do something in Python, there’s a very good chance that there’s a package that will help you out.

● _e Python Package Index, or PyPI, is the principal repository for Python so�ware.

● Let’s try searching PyPI for "graphs".

● We can also Google "python graphs" and see if any useful packages pop up.

● Don’t just choose the ûrst package you ûnd — read the package’s documentation (make sure it has good docu-
mentation) and see if it is suitable for you.

1

https://pypi.python.org/pypi

Solution to car maintenance example

Installing Python packages

● In this class, we’ll use networkx to represent graphs.

○ It has good documentation, it’s pretty easy to use, and has a lot of built-in functionality.

● To install networkx, open a WinPython Command Prompt and type:

pip install networkx

● pip might tell you that networkx is already installed. If not, it should go ahead and install it for you.

Building a graph in networkx

● To use networkx, we ûrst need to import it so that we can access its functions, like this:

In [2]: import networkx as nx

● as nx in the cell above lets us refer to networkx as nx.

○ _is helps us save some keystrokes and keeps our code a bit cleaner.

● Let’s build the directed graph for the example above in networkx.

● We can start by creating an empty digraph called G, like this:

In [3]: # Create empty digraph
G = nx.DiGraph()

● Next, let’s add nodes 1-6 to G. We can do this by using the .add_node() method on G, like so:

2

https://networkx.github.io

In [4]: # Add nodes
G.add_node(1)
G.add_node(2)
G.add_node(3)
G.add_node(4)
G.add_node(5)
G.add_node(6)

● Food for thought. What is a shorter way of expressing the code in the above cell?

We can use a for loop to add the nodes instead.

● Now we need to add the edges, as well as the length of each edge.

● We can do this by using the .add_edge() method on G.

● For example, to add the edge (1, 2) with length 9, we would write:

In [5]: # Add edge (1,2) with length 9
G.add_edge(1, 2, length=9)

● In the above statement, we are assigning edge (1, 2) an attribute called length with value 9.

● Note that length is a name of our choosing.

● We could have used weight or cost or monkey instead of length.

● As long as we are consistent across all the edges we deûne, then we can use the edge lengths easily later on.

● Let’s add the rest of the edges and edge lengths:

In [6]: # Add the rest of the edges outgoing from node 1
G.add_edge(1, 3, length=15)
G.add_edge(1, 4, length=22)
G.add_edge(1, 5, length=34)
G.add_edge(1, 6, length=49)

Add edges outgoing from node 2
G.add_edge(2, 3, length=9)
G.add_edge(2, 4, length=15)
G.add_edge(2, 5, length=22)
G.add_edge(2, 6, length=34)

Add edges outgoing from node 3
G.add_edge(3, 4, length=9)
G.add_edge(3, 5, length=15)
G.add_edge(3, 6, length=22)

Add edges outgoing from node 4
G.add_edge(4, 5, length=9)
G.add_edge(4, 6, length=15)

Add edges outgoing from node 5
G.add_edge(5, 6, length=9)

3

Accessing edge information

● Two nodes are adjacent if they are endpoints of the same edge.

● We can ûnd the nodes adjacent to node 2 by outgoing edges like this:

In [7]: # Print nodes adjacent to node 2 by outgoing edges
print(G[2])

{3: {'length': 9}, 4: {'length': 15}, 5: {'length': 22}, 6: {'length': 34}}

● We see that (2, 3) is an edge in G with length 9, as desired.

● Same goes for (2, 4), (2, 5), and (2, 6).

● We can ûnd the length of edge (2, 5) directly like this:

In [8]: # Print the length of edge (2, 5)
print(G[2][5]["length"])

22

● Note that if we used a diòerent attribute name above, we would need to use that instead of "length".

● For example,

print(G[2][5]["monkey"])

● Fine point. networkx stores graph information as dictionaries nested within dictionaries.

Solving shortest path problems

● _e Bellman-Ford algorithm solves shortest path problems on directed graphs with negative edge lengths.

○ _e algorithm will output either (i) a shortest path from the source node to the target node, or (ii) declare
that there is a negative directed cycle.

● networkx has an implementation of the Bellman-Ford algorithm, but it doesn’t automatically output the most
useful information.

● We will use a package called bellmanford that extends networkx’s implementation of the Bellman-Ford algo-
rithm to output useful information easily.

● To install bellmanford, open a WinPython Command Prompt and type:

pip install bellmanford

● To use bellmanford, we must ûrst import it, just like with networkx:

4

In [9]: import bellmanford as bf

● To ûnd the shortest path from node 1 to node 6 in the graph G we created above, we can do this:

In [10]: path_length, path_nodes, negative_cycle = bf.bellman_ford(G, source=1, target=6,
weight="length")

● _e weight argument corresponds to the edge attribute we deûned to have the edge lengths.

● bellman_ford has three outputs: see what they look like below:

In [11]: print("Is there a negative cycle? {0}".format(negative_cycle))
print("Shortest path length: {0}".format(path_length))
print("Shortest path: {0}".format(path_nodes))

Is there a negative cycle? False
Shortest path length: 37
Shortest path: [1, 3, 6]

Interpreting the output

Example. How does the output from the previous code cell translate to the original problem?

_e length of the shortest path represents the minimum cost of owning and maintaining a car over the next 5 years,
which in this case is 37,000 dollars.

_e nodes in the shortest path indicate when to buy a new car (and trade-in the old car). In this case, we should buy a
new car in year 1 and year 3.

Another example — on your own

● Here’s another example from Lesson 1.

_e Simplexville College campus shuttle bus begins running at 7:00pm and continues until 2:00am. Several drivers
will be used, but only one should be on duty at any time. If a shi� starts at or before 9:00pm, a regular driver can be
obtained for a 4-hour shi� at a cost of $50. Otherwise, part-time drivers need to be used. Several part-time drivers can
work 3-hour shi�s at $40, and the rest are limited to 2-hour shi�s at $30. _e college’s goal is to schedule drivers in a
way that minimizes the total cost of staõng the shuttle bus.

1. Formulate this problem as a shortest path problem.

2. Solve your shortest path formulation: give the shortest path length and a shortest path.

3. Interpret the shortest path length and shortest path in the context of the problem.

● We formulated this as a shortest path problem as follows:

5

Solution to shuttle bus example

In [12]: # Write your code here
Create empty graph
G = nx.DiGraph()

Add nodes
G.add_node("7pm")
G.add_node("8pm")
G.add_node("9pm")
G.add_node("10pm")
G.add_node("11pm")
G.add_node("12am")
G.add_node("1am")
G.add_node("2am")

Add edges for 4-hour shifts
G.add_edge("7pm", "11pm", length=50)
G.add_edge("8pm", "12am", length=50)
G.add_edge("9pm", "1am", length=50)

Add edges for 3-hour shifts
G.add_edge("7pm", "10pm", length=40)
G.add_edge("8pm", "11pm", length=40)
G.add_edge("9pm", "12am", length=40)
G.add_edge("10pm", "1am", length=40)
G.add_edge("11pm", "2am", length=40)

Add edges for 2-hour shifts
G.add_edge("7pm", "9pm", length=30)
G.add_edge("8pm", "10pm", length=30)
G.add_edge("9pm", "11pm", length=30)
G.add_edge("10pm", "12pm", length=30)
G.add_edge("11pm", "1am", length=30)
G.add_edge("12pm", "2am", length=30)

Solve shortest path problem
path_length, path_nodes, negative_cycle = bf.bellman_ford(G, source="7pm",
target="2am", weight="length")
print("Is there a negative cycle? {0}".format(negative_cycle))

6

print("Shortest path length: {0}".format(path_length))
print("Shortest path: {0}".format(path_nodes))

Is there a negative cycle? False
Shortest path length: 90
Shortest path: ['7pm', '11pm', '2am']

_e length of the shortest path is the minimum cost of staõng the shuttle from 7pm to 2am, which in this case is 90
dollars.

_e nodes in the shortest path indicate when to change drivers, and the edges in the shortest path represent the shi�s
used. In this case, we should have a driver on a 4-hour shi� from 7pm to 11pm, and then a 3-hour shi� from 11pm to
2am.

7

	Overview
	An example
	Finding Python packages
	Installing Python packages
	Building a graph in networkx
	Accessing edge information
	Solving shortest path problems
	Interpreting the output
	Another example — on your own

